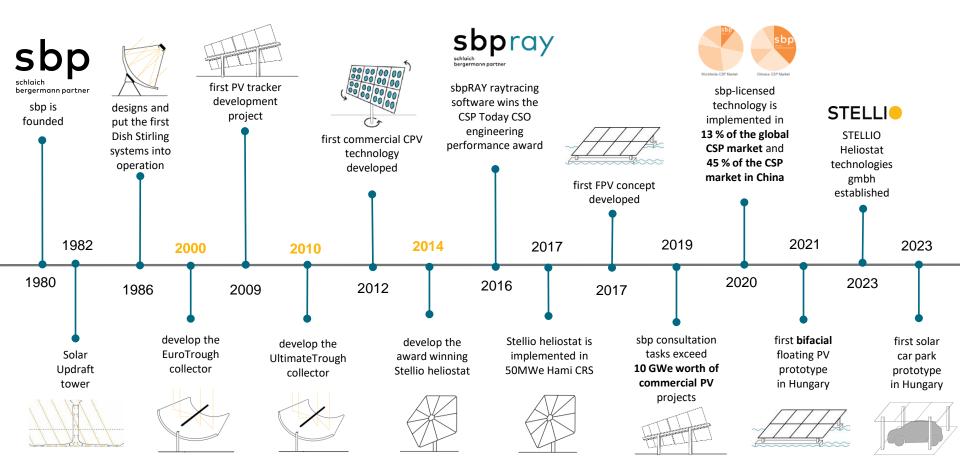


Concentrated Solar Power

Structural engineering by sbp – schlaich bergermann partner



sbp sonne gmbh offers the following services:

- Multidisciplinary consulting for client and owner
 - Interpretation and statistical analysis of meteorological data
 - Efficiency calculation and yield analysis
 - Optical evaluations and optimizations (intercept factors, flux density distribution, and flux control)
 - Structural reviews, conceptualization, calculation and optimization services
 - Techno-economic optimisation of all solar energy systems with special focus on structures
 - Conceptualization and logic of structural stow behaviour
 - Feasibility studies
- Conception, development, and implementation of solar technologies
 - Planning of prototype and series production
 - Assembly supervision and quality management during construction
 - Controls engineering and drive units design and specification
- Technology provider / licenser of EuroTrough, UltimateTrough, Stellio heliostat, PV Tracker, Floating PV, Agricultural PV and Parking lot PV

PV / PV-single-axis tracker

Introduction: Since 2016

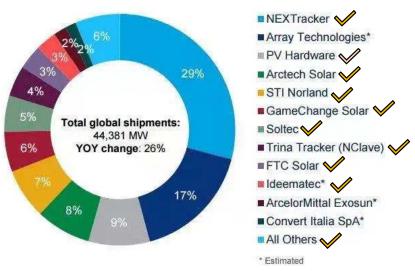
- Relevancy of PV in the medium-long term
- Commitment of the company with this technology

Consequences:

Research & Development

Understanding of technology requirements, capability to offer added value for the marke

Root Case Analysis Experience in determining reasons for tracker failure in several projects


Tracker Technology Development For 3rd party clients, full or partial participation

Strategic Decision Capitalization
Knowledge moveable structures
WTT know-how

PV engineering services track record (2016-2023)

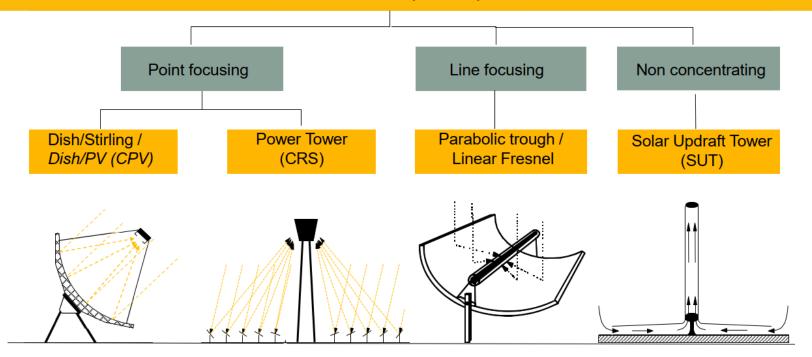
sbp sonne reviewed 70%-80% world leading tracker technology.

Global PV Tracker Market Share Rankings by shipment, 2020

Clients that **specify** sbp sonne structural review:

- **ACWA Power** (compulsory exclusive)
- **Statkraft** (formerly Solar Century, compulsory exclusive)
- Total Energies
- Tracker Technologies Solutions
 - 5 developments/design assistances
- Root Cause Analysis
 - 15 for insurance companies
 - 8 for owners
 - 1 for component manufacturer

Tracker Reviews (since 2018)


Issued projects: 62

On progress projects: 6

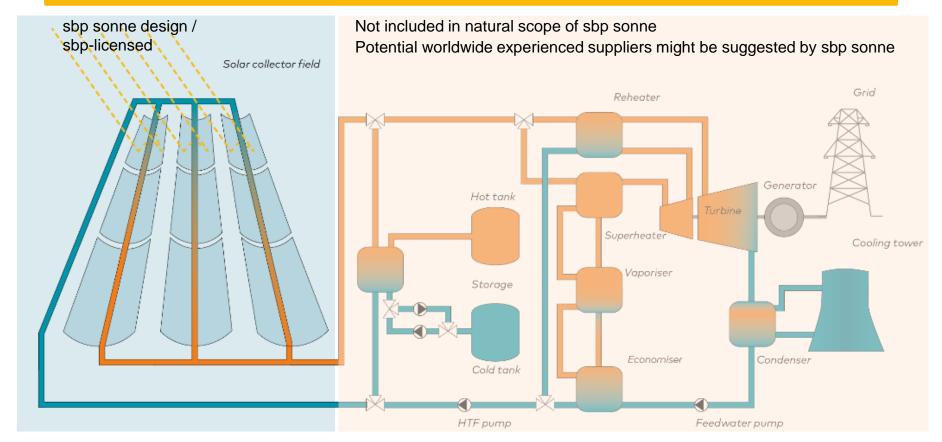
Capacity: +50 GW

Solar thermal power plants

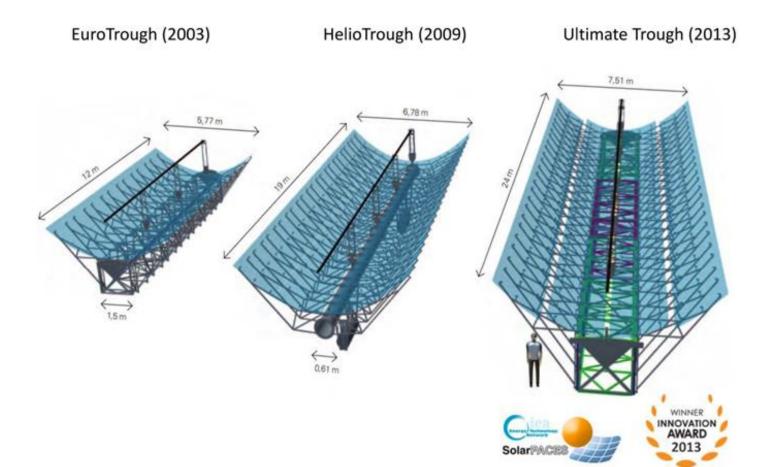
EuroTrough Technology

- Engineering
- License
- Training
- Quality Control

UltimateTrough Technology


- Engineering
- License
- Training
- Quality Control

Stellio Technology


- Engineering
- Turnkey/specialist items supply
- Solarfield warranties

Parabolic trough CSP plants

EuroTrough Parabolic Trough Collector

Technology provider: sbp sonne, Germany

Industrial development partner: Flagsol GmbH

Focus of the design

- Cost effective + high performance PTC
- Thermal oil as HTF
- Mid size solar fields / 0.5 Mio m²

Prototype

 EuroTrough II Prototype 2002, Spain

Test Loop

• SKAL ET Test Loop 2003, USA

Commercialization

• 50 MW Andasol I 2008, Spain

Continuous Optimzation + Localication

(Egypt, India, China)

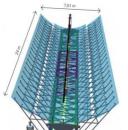
50 MW Andasol II, 2009

- 50 MW Andasol III, 2011
- 30 MW Kuraymat, 2011
- 50 MW Astexol, 2012
- 50 MW Moron, 2012
- 50 MW, Godavari, 2013
- 50 MW, Shaqaya, 2017
- 50 MW Delingha, 2017
- 100 MW Urat, 2020
- 40 MW Zhabuye, 2024

UltimateTrough Parabolic Trough Collector (Thermal Oil)

Technology provider: sbp sonne, Germany Industrial development partner: Flabeg SE (+ new partner)

Focus of the design


- +20 % solar field cost reduction
- Molten salt Thermal oil as HTF
- Large size solar fields / 1.0 Mio m²

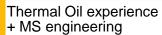
• UT Test Loop 2013, USA

Commercialization

• 40 MW Duba Green ISCC 2018, KSA

Continuous Optimzation + Localication (KSA, China)

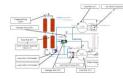
Project development pipeline China 2024

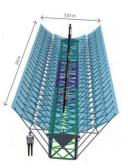


UltimateTrough Parabolic Trough Collector (Molten Salt)

Technology provider: sbp sonne, Germany

Industrial development partner: Local Chinese Partner

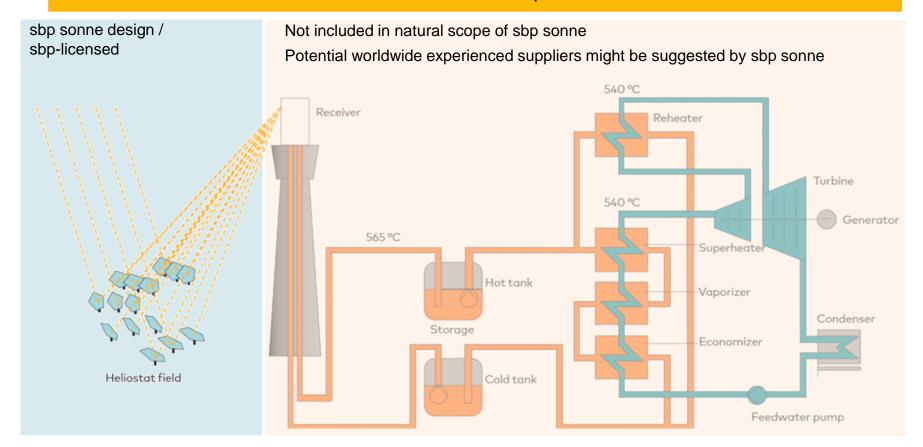

Focus of the design (see previous slide)


- Ultimate TroughPrototype 2011, Germany
- UT Test Loop (Oil) 2013, USA
- 40 MW DUBA Green ISCC 2018, KSA

MS Test Loops ut Test Loop 2024+, China

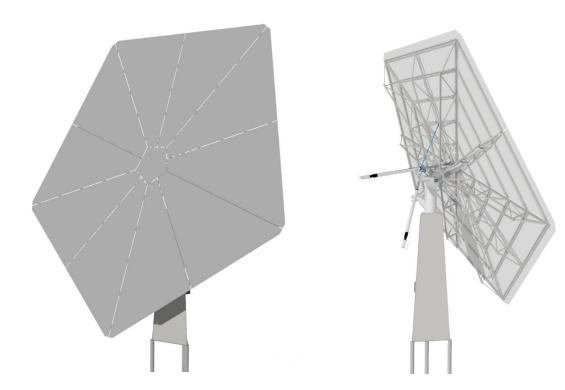
- Demonstrate feasibility of critical parts and procedures
- · Swivel joints
- Filling and drainage procedures
- Chinese Partner familiarizes itself with the technology
- · Establish supply chain
- Localization (optional)

Molten Salt (MS) Road Map 2024+


Commercialization

 Project development pipeline by Chinese Partner China 2025 Continuous
Optimzation +
Localication
(China)

Project development pipeline China + international 2026



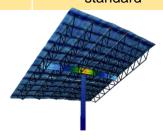
Power tower CSP plants

STELLIO Heliostat (2015)

Heliostat size, optical quality, tracking strategy, shading/blocking, astigmatism effects

Solar energy yield, mirror area & solar field size

Structure/material, manufacturing, assembly, installation


Heliostat cost

Why is Stellio different? Don't compare apples to oranges...

Holistic approach: Not only cost/m² is optimized but...

	Conventional Heliostat	Stellio Heliostat	Effect	Pro /Con
Shape	rectangular	pentagon	à denser solar field	+
Size	5-100 m ²	50 m²	à optimized kg/m² + RMB/m²	+
Structural usage	unbalanced	even	à better stiffness + optics	+
Optical quality	standard	high	à equals to 8.2% investment cost saving	+
Continuous tracking	not available	available	à equals to 0.7% investment cost saving	+
Shading blocking	standard	optimum	à equals to 0.6% investment cost saving	+
Astimatism effects	standard	optimum	à equals to 0.9% investment cost saving	+

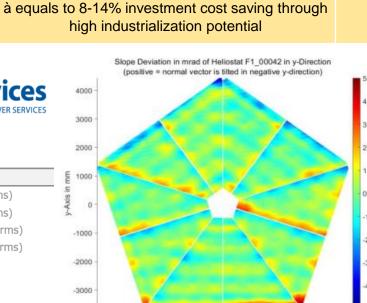
Stress under dead weight

			CSP Services CONCENTRATING SOLAR POWER SERVICES		
QDec	Measuremei	nt Summai	ry	20	
Value	Measurement	Specification	Description	E 10	
SDx	0.81 mrad		Slope deviation in x-direction (rms)	u sp	
SDy	0.87 mrad		Slope deviation in y-direction (rms)	y-Ax	
SDrad	0.81 mrad		Slope deviation in rad-direction (rms)	-10	

Stellio

Heliostat

complex


precision jigs

customized steel

structure

Slope deviation in tan-direction (rms)

Slope deviation total (rms)

x-Axis in mm

2000

3000

Effect

à higher optical quality

-2000

Pro

/Con

0.87 mrad

1.19 mrad

SDtan

SDtotal

Kinematics

Mirror assembly

Procurement cost efficiency

1.30 mrad

Conventional

Heliostat

simple

no jigs

standard steel structure

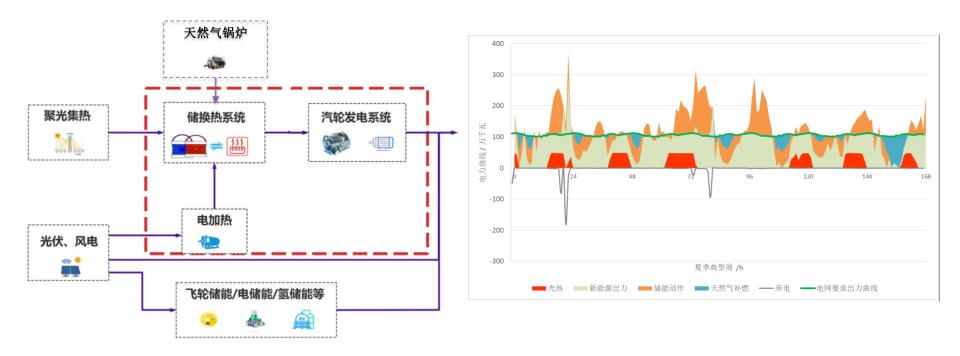
(heavy)

Performance (yield) improved by 10% due to advanced engineering

appropriate consideration in tenders required and Stellio quality to be maintained

Cost only partially optimized

further cost savings possible (10-15%) by industrialisation of manufacturing, assembly, installation


Multidisciplinary consulting for client and owner (CSP) – selection –

	Service	Content	Related Companies	Power Tower	Parabolic Trough
•	Solar Power Plant + Solar Field Layout Feasibility studies Conceptual design Detailed design Optimization	 Interaction with combined PV + wind systems Application of requested electricity delivery schemes Implementation of Chinese Energy policy requirements for grid friendliness: Peak shaving Reduction of dumped share of PV & Wind Reduction of natural gas/ purchased electricity Provision of grid stability Efficiency calculation Yield analysis Economic optimization of power plant components: (Power block, TES, eTES, battery, heat exchanger etc.) Comparison of competing technologies 	All services by sbp sonne	X	X

Multidisciplinary consulting for client and owner (CSP)

Implementation of Energy policy requirements for grid friendliness

Multidisciplinary consulting for client and owner (CSP) – selection –

Related

sbp sonne

CSP Services

sbp sonne

CSP Services

Volateq

sbp sonne

Power

Χ

Χ

Χ

Parabolic

Χ

Χ

		Companies	iower	rrougn
Interpretation and statistical analysis of meteorological data	 Extreme wind analysis Definition of design wind load according to Chinese code 	sbp sonne Wind Engineer	X	Х
Foundation design	Optimzation of foundation systems according site conditions	sbp sonne Geotecnical Engineer	X	Х

Content

Optimzation of intercept and energy yield

Determination of optical parameters, errors, intercept

On site support during fabrication, construction, erection,

Multidisciplinary consulting for client and owner (CSP)

Adoption of operation strategies

Interface to Powerblock control

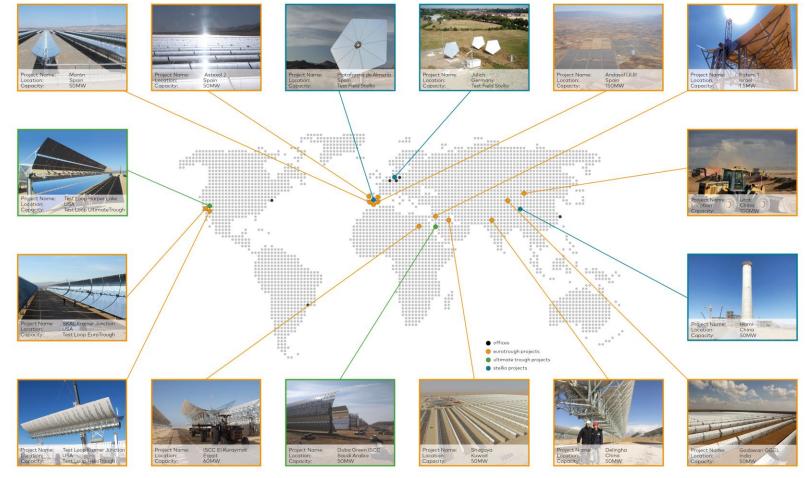
Flux control and interface to receiver

Cloud passages

commissioning

Service

Aim point strategy


Solar field control

Solar field / collector

characterization

Quality management

and more

Marquesado Solar S.L, Spain Client:

Location: Aldeire, Spain

Scope of work: EuroTrough licence package,

> design, structure, drive technology, detailed engineering, tender documents,

fabrication and site supervision

Aperture: 497,000 m²

The 50 MW solar thermal power plant Andasol III is based on the Eurotrough design. The plant is situated in close vicinity to the power plants Andasol 2 and 3. The collector field covers an area of approximately 1,300 m x 1,500 m and consists of 152 loops respectively 7,296 solar collector elements (SCEs). The thermal storage allows an operation of the plant with nominal output for 7.5 hours after sunset. The power plant produces approximately 179 GWh annually, providing

Client: CGN Delingha Solar Energy Co.

Location: Delingha, China

Scope of work: EuroTrough license package for tender

and execution phase including engineering supervision during

fabrication and assembly

Aperture: 620,000 m²

The 50 MW solar thermal power plant Delingha is designed on the base of the EuroTrough design. The collector field consists of 190 loops respectively 9,120 single trough collector elements (SCEs). One solar collector assembly (SCA) consists of 12 solar collector elements which are 12 m long each. The design was adapted to the local wind loads, 1% sloped ground, low temperatures and Chinese standards. The thermal storage allows an operation of the plant with nominal output for 9.5 hours after sunset, schlaich bergermann partner provided the EuroTrough technology on a licensing basis and actively assisted fabrication and assembly.

sbpsonne

Selected project

Urat 100MW Parabolic Trough CSP

Project

Urat, Inner Mongolia, China

Scope of work: EuroTrough license package for tender

> and execution phase including engineering supervision during

fabrication and assembly

Aperture: 1,115,000 m²

China Shipbuilding New Power (CSNP)

Solar field EPC + Royal Tech CSP Ltd.

The 100 MW solar thermal power plant Urat is designed on the base of the EuroTrough design. The collector field consists of 352 loops respectively 16,896 single trough collector elements (SCEs). One solar collector assembly (SCA) consists of 12 solar collector elements which are 12 m long each. The design was adapted to the local wind loads, 1% sloped ground, low temperatures and Chinese standards. The thermal storage allows an operation of the plant with nominal output for 10 hours after sunset.

schlaich bergermann partner provided the EuroTrough technology on a licensing basis and actively assisted fabrication and assembly.

Client: Zhabuye 40MW Parabolic Trough CSP

Project

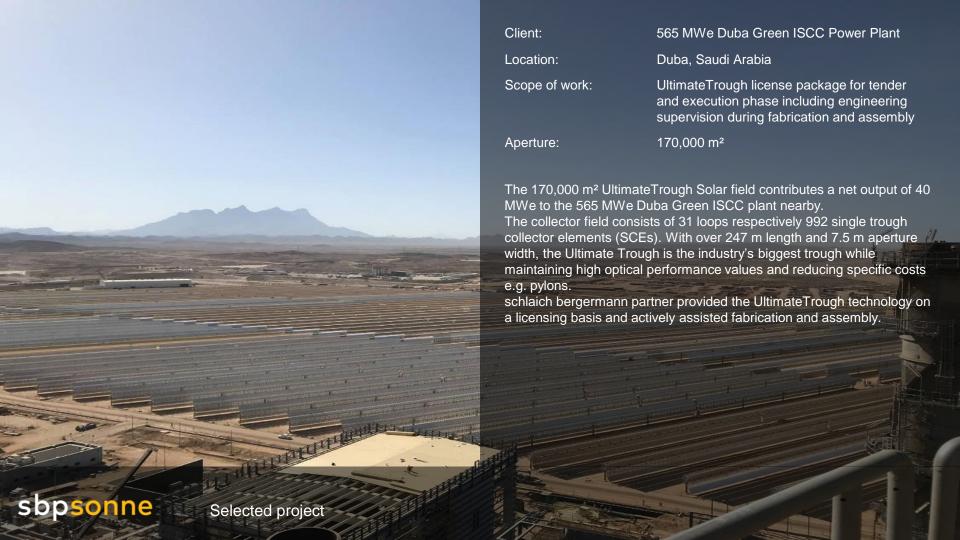
Location: Zhabuye, Tibet, China

Scope of work: EuroTrough license package for tender

and execution phase including engineering supervision during fabrication and assembly

Aperture: 621,000 m²

Owner: Baowu


Solar field EPC + China Shipbuilding New Power (CSNP) technology licensee:

The 40 MW solar thermal power plant Zhabuye is designed on the base of the EuroTrough design.

The collector field consists of 190 loops respectively 9,120 single trough collector elements (SCEs). One solar collector assembly (SCA) consists of 12 solar collector elements which are 12 m long each.

The thermal storage allows an operation of the plant with nominal output for 16 hours after sunset.

schlaich bergermann partner provided the EuroTrough technology on a licensing basis and actively assisted fabrication and assembly.

Client: Dongfang Boiler Group Co., Ltd.

Location: Hami Kumul, China

Scope of work: Structural design incl. adaptions. Solar field layout, performance calculation. Support for: Chinese procurement, site works, QA,

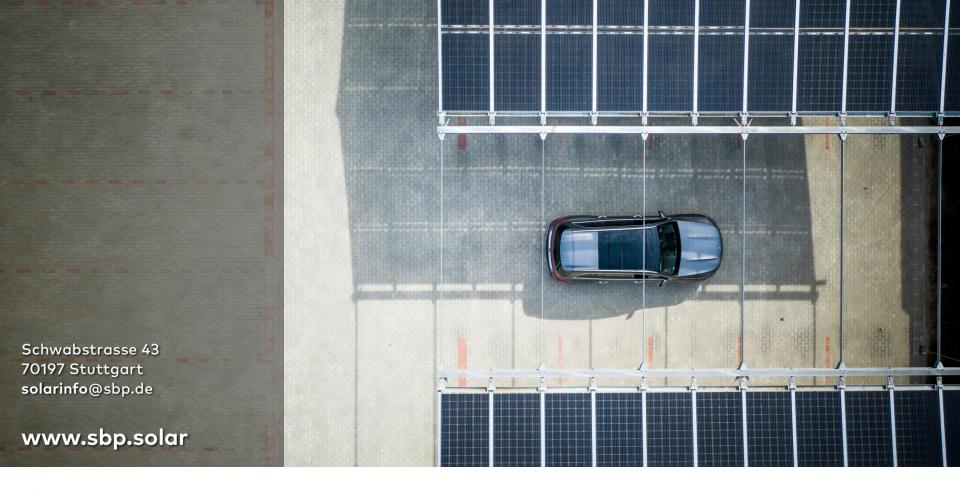
Chinese procurement, site works, QA, commissioning. Design of a BCS (beam characterization system), and software

development.

Output: 50 MWe

The project is part of the first batch of Concentrated Solar Power demonstration projects in China. The Stellio heliostat developed by sbp with partners is used here for the first time. The entire solar field was planned in cooperation with our Spanish partners. Steel construction, mirrors, electrical system and part of the control technology are supplied by local companies. For the assembly of the 14'500 heliostats a semi-automatic assembly line developed by our Spanish partner and leased to the client was installed and operated on site. Apart from the first commercial use of the heliostat, particular challenges lie in the coordination of the companies involved, in the quality assurance of components and assembly as well as the working conditions in winter at temperatures below -20 °C.

中国电力工程顾问集团西北电力设计院有限公司



sbpsonne

Solar thermal power

sbpsonne

sbpsonne